Mostrando las entradas con la etiqueta construcción de tabla de valores de verdad. Mostrar todas las entradas
Mostrando las entradas con la etiqueta construcción de tabla de valores de verdad. Mostrar todas las entradas

TABLA DE VALORES DE VERDAD - CONSTRUCCIÓN

Enunciados y proposiciones lógicas: https://youtu.be/-mwtBmNCWBM
Conectivos u operadores lógicos: https://youtu.be/27OagHo3CXQ
Proposiciones simples y compuestas: https://youtu.be/5M0QJpGNsnI
Como expresar en el lenguaje simbólico proposiciones lógicas: https://youtu.be/DO3wXiso0-s
Operaciones con proposiciones lógicas: https://youtu.be/_U2T5fXYE1A
Valor de verdad de las proposiciones lógicas: https://youtu.be/7yG51IKT6hs
Valor de verdad de las proposiciones lógicas expresadas en el lenguaje simbólico: https://youtu.be/IIDDj9GxGSg
Leyes lógicas - Parte 1: https://youtu.be/gTPGnViPvt0
Leyes lógicas - Parte 2: https://youtu.be/M5AYSPiFsyI
Simplificación de proposiciones: https://youtu.be/w4mwDQDXL8U
Inferencia lógica o argumento lógico: https://youtu.be/EkLZ1OPYFdg

1.           TABLA DE VALORES DE VERDAD
Consiste en obtener los valores del operador principal a partir de la validez de cada una de las variables proposicionales.
Para evaluar una tabla de verdad de dos variables proposicionales se necesitan
22 = 4 valores de verdad  en cada columna. En general el número de valores de verdad que  se asigna a cada variable resulta de aplicar la fórmula 2n,  donde “n” es el número de variables que hay en el esquema molecular o proposición lógica.
Las combinaciones de todas las posibilidades de V y F se hacen en las columnas de referencia al margen izquierdo del esquema, luego se procede a aplicar la regla a cada uno de los operadores, empezando por el de menor alcance hasta llegar al de mayor jerarquía.
Ejemplo:
Construye la tabla de verdad del esquema molecular:
~ (p Ù q ) « [(~ p) Ú (~ q)]

Solución:
Aplicando la fórmula 2n = 22 = 4 (n=2) porque el número de variables o proposiciones son 2, p y q.
En la columna de p se escribe hacia abajo 2 verdaderos y dos falsos, seguidamente en la siguiente columna, columna de q se escribe, un verdadero y un falso, un verdadero y un falso.
Para resolver se tiene en cuenta los signos de agrupación y el  orden, en nuestro ejemplo se procede así:
§ Se resuelve la columna 1 con el operador de la conjunción.
§ Se resuelve la columna 2, en este caso, es la negación del resultado de la columna 1.
§ Se resuelve la columna 3, que es la negación de la proposición p.
§ Se resuelve la columna 4, que es la negación de la proposición q.
§ Columna 5, es el resultado de operar las columnas 3 y 4, con el operador de la disyunción inclusiva.
§ Columna 6,  es el resultado de operar las columnas 2 y 5, con el operador de la bicondicional.

OBSERVACIÓN

-       Para combinar los valores de verdad de las variables p y q, se realiza lo siguiente: n = 2  ( 2 variables)
-       Se aplica la fórmula 2n = 22  = 4
-       Significa que en la primera columna se tendrán 4 valores, 2 verdaderos y 2 falsos
-       En la segunda columna se tendrán la mitad de lo anterior, en este caso, un verdadero y un falso


  
p     q
~ (p Ù q) « [(~p) Ú (~q)]
V    V 
V    F
F    V
F    F
F
V
V
V
   V
   F
   F
   F
 V
 V
 V
 V
F
F
V
V
F
V
V
V
F
V
F
V
PASOS
2
   1
 6
3
5
4
       







La columna 6 es el resultado de evaluar el esquema molecular o proposición compuesta por el método de la tabla de valores de verdad. La columna resultado presenta diferentes formas, que a continuación estudiamos.

1.1.      TAUTOLOGÍA.- Llamamos tautología si en la columna resultado todos los valores  son verdaderos
1.2.      CONTRADICCIÓN.- Llamamos contradicción si en la columna resultado todos los valores son falsos.
1.3.      CONTINGENCIA.- Llamamos contingencia si en la columna  resultado se encuentra verdaderos y falsos, sin  considerar cuántos verdaderos o cuántos falsos existan, es suficiente que se encuentren  ambos.

Vídeos de tabla de verdad en You Tube:
1) Tabla de valores de verdad.

2) Como construir tablas de valores de verdad.