IMPLICACIÓN LÓGICA Y EQUIVALENCIA LÓGICA




1.           IMPLICACIÓN LÓGICA Y EQUIVALENCIA LÓGICA
IMPLICACIÓN LÓGICA
Se llama implicación lógica o simplemente implicación a toda    condicional
p ® q que sea tautología.
Ejemplo:
Verifica si la siguiente condicional es una implicación lógica:
[(p ® q) Ù ~ q] ® ~ p

p     q
 [(p ® q)    Ù    ~ q]      ®  ~ p
V    V 
V    F
F    V
F    F

   V
   F
   V
   V
 F
 F
 F
 V
F
V
F
V
V
V
V
V
F
F
V
V






En la columna resultado se observa los valores de verdad, en este caso todos son verdaderos. Entonces, afirmamos que la condicional es tautología, por tanto, es una implicación lógica. Si en la columna resultado se obtiene contradicción o contingencia, entonces, no existe implicación lógica.

EQUIVALENCIA LÓGICA
Se llama equivalencia lógica o simplemente equivalencia a toda bicondicional p « q que sea tautología.
Ejemplo:
Verifica si la siguiente bicondicional es una equivalencia lógica:
[p Ù (p Ú q)] « p
p     q
[ p   Ù    (p Ú q)]  «    p
V    V 
V    F
F    V
F    F
V
V
F
F
V
V
F
F




V
V
V
F

V
V
V
V
V
V
F
F








Como se verifica que el resultado de la bicondicional, es tautología, afirmamos que es una equivalencia lógica.
Entonces, podemos afirmar que: [p Ù (p Ú q)] º p

ACTIVIDAD DE APRENDIZAJE  Nro. 02


1)   Construye las tablas de valores de verdad de las siguientes proposiciones y evalúa si es tautología, contradicción o contingencia:
a) [(p Ú ~ q) Ù ~ p] D ~ (~ q ® p)
b) [p Ú (q ® r) ] ® [ (~p Ù ~r) « ~q
2)   Dadas las proposiciones: M= (p ® q) Ú ~p   y   N = (~p Ú q)
Evalúa si M implica a N.
3)   Dadas las proposiciones S = ~p ® (p Ú q)  y T= (p ® ~q)
Evalúa si S es equivalente a T.